В работе дан обзор эвристических методов кластеризации адресного пространства публичных распределенных реестров. Упомянутые техники опираются на достаточно простые наблюдения за поведением типичных пользователей и здравый смысл. Формально эвристики представляют собой вырожденные решающие правила, которые не предполагают подбора параметров в ходе обучения по заранее отобранным данным. Можно также считать, что эвристикам соответствуют устойчивые мотивы в графовых представлениях истории транзакций. Несмотря на кажущуюся простоту и отсутствие возможности проверить правильность результатов их работы, эти подходы демонстрируют достаточно хорошую эффективность и зачастую их применение предваряет использование гораздо более сложного инструментария на основе современного машинного обучения и искусственного интеллекта. Приведены эвристики для Bitcoin, Ethereum, Ripple, Monero и Zcash. Кратко рассмотрен пример эвристической кластеризации по данным о cross-chain транзакциях. Отмечены случаи, когда эвристики дают некорректные результаты. Насколько можно судить, обзор такого рода публикуется на русском языке впервые.
Комментарии