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Freedom Broker, г. Алматы, Казахстан 

В работе представлена новая методика моделирования поверхности подразумеваемой 
волатильности, основанная на комбинации гауссовых смесей (Gaussian Mixture Models, 
GMM) и гауссовой регрессии смесей (Gaussian Mixture Regression). В отличие от традици-
онных методов, предполагающих фиксированную функциональную форму поверхности 
волатильности, предлагаемый фреймворк является формонезависимым (shape-agnostic) 
и способен гибко описывать сложную динамику волатильности для различных классов 
активов, включая широкий спектр форм улыбок — от классических U-образных до много-
модальных W-образных и других, встречающихся в реальной торговой практике. Исполь-
зуя вероятностную выразительность GMM и прогностическую мощь регрессии, метод до-
стигает точности, сопоставимой с моделями глубокого обучения, при этом превосходя их 
по вычислительной эффективности, не требуя обучения. Эмпирические эксперименты по-
казывают, что предложенный подход превосходит существующие параметрические мо-
дели по гибкости и устойчивости, обеспечивая при этом точность, аналогичную нейросе-
тевым решениям, но с заметно меньшими вычислительными затратами. Благодаря своей 
лёгкости, масштабируемости и интерпретируемости метод особенно подходит для высо-
кочастотных финансовых приложений, предоставляя исследователям и практикам 
надежный инструмент для моделирования волатильности и управления рисками. 

Введение 
Поверхность подразумеваемой волатильности (IV-surface) является фундаментальным инструмен-

том в количественных финансовых системах: она позволяет унифицировать котировки опционов с раз-
ными страйками и сроками, оценивать переоценки или недооценки, строить индексы IV и проводить 
управление рисками. Как подчеркивается в литературе, поверхность подразумеваемой волатильности 
представляет собой базовый элемент вычислительных финансов, лежащий в основе большинства мо-
делей оценки и управления рисками [1]. Однако значение IV-поверхности выходит далеко за рамки лишь 
количественных систем. Она также играет существенную роль в фундаментальном анализе, поскольку 
отражает совокупные ожидания рынка относительно будущей неопределенности и риска. Например, 
форма и динамика IV-поверхности содержат информацию о сохраняющейся или нарастающей вола-
тильности, что может быть связно с корпоративными событиями, изменениями дивидендной политики, 
технологическими шоками, макроэкономическими изменениями и другими событиями фундаменталь-
ного или количественного характера [2]. В этом смысле IV-поверхность выступает не просто инструмен-
том ценообразования, но и индикатором рыночных восприятий и ожиданий: она может быть использо-
вана при оценке фундаментальной стоимости компании, формировании премий за риск, а также отсле-
живании настроений инвесторов и потенциальной реакции рынка. Например, исследование показывает, 
что вытянутые кривые IV по срокам и страйкам отражают информацию о будущих доходностях акций и 
ожиданиях рынка [3]. Таким образом, интеграция IV-поверхности в анализ — как количественный, так и 
фундаментальный — позволяет получить более полное понимание рыночной динамики: не только с 
точки зрения распределения вероятностей будущей волатильности, но и с точки зрения сигналов, кото-
рые рынок посылает о рисках, неопределенности и изменении условий. 

Для практических приложений важно не просто смоделировать поверхность подразумеваемой во-
латильности, но сделать это быстро, точно и без арбитражных нарушений, поскольку даже небольшие 
искажения в реальном времени могут вести к серьезным последствиям. В условиях краткосрочного/сред-
несрочного хеджирования, высокочастотной/внутридневной торговли задержки и шумы в модели могут 
привести к следующим нежелательным эффектам: 

● ошибочной оценке риска — из-за неточной поверхности волатильности могут быть неправильно 
рассчитаны грек-параметры (дельта, вега, гамма) и, следовательно, хедж-позиции окажутся не-
адекватными; 

● неэффективному распределению капитала — торговые или хеджевые решения могут базиро-
ваться на неверной оценке подразумеваемой волатильности, что ведет к избыточной или не-
достаточной экспозиции; 

● арбитражным потерям или усилению систематического шума — модель с плохо сглаженной 
поверхностью может выдавать нелогичные точки (например, нарушение условий арбитража), 
что создаёт риск эксплуатации или потерь; 
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● искажению индексов волатильности и последующему ухудшению качества стратегий риск-ме-
неджмента — если IV-показатели построены на шумной поверхности, то стресс-тесты, сценар-
ное моделирование и расчёты хвостовых рисков становятся менее надежными. 

Множество исследований подчеркивают важность скорости, точности и отсутствия арбитража при 

моделировании IV-поверхностей. Так, в работе «High‑frequency dynamics of the implied volatility surface» 
автор указывает, что условия отсутствия арбитража (no-arbitrage) могут быть выражены через пара-
метры модели, и уделяет внимание высокочастотной динамике IV-поверхности [4]. Другая работа «A 
Two‑Step Framework for Arbitrage‑Free Prediction of the Implied Volatility Surface» рассматривает задачу 
предсказания поверхности с учётом предотвращения арбитража и подчёркивает, что конструкция по-
верхности должна быть как гибкой, так и работоспособной для приложения в реальном времени [5]. В 
исследовании «The latency accuracy trade‑off and optimization in implied volatility modelling» отмечает, что 
в таких системах существует явный компромисс между скоростью (латентностью) и точностью: чем выше 
скорость (меньше задержка), тем выше риск потери точности, что критично для количественного трей-
динга [6]. Наконец, в статье «Imposing No‑Arbitrage Conditions In Implied Volatility Surfaces Using Con-
strained Smoothing Splines» подробно анализируются техники обеспечения арбитраж-свободы при сгла-
живании поверхностей подразумеваемой волатильности, что важно для корректной работы риск-моде-
лей [7]. 

Во всех этих работах видно: модель поверхности подразумеваемой волатильности должна удовле-
творять четырем ключевым требованиям: 

1. высокая точность — чтобы адекватно отражать динамику рынка и позволять корректно выяв-
лять переоценки/недооценки; 

2. минимальная задержка — чтобы интегрироваться в системы реального времени или высокоча-
стотную торговлю; 

3. гибкость по форме — чтобы адаптироваться к различным рынкам, страйкам, срокам, ликвидно-
сти; 

4. отсутствие арбитражных нарушений — чтобы поверхность была экономически корректной и не 
содержала нелогичных точек. 

Существующие подходы и их ограничения 
Классические параметрические подходы, прежде всего SVI и SABR, закрепились в практике из-за 

простоты, скорости и удобства калибровки. SVI задаёт улыбку для фиксированного срока экспирации в 
виде компактной параметризации с контролируемой асимптотикой по лог-страйку; в ряде работ пока-
зано, как накладывать условия отсутствия статического арбитража, чтобы получить экономически согла-
сованные поверхности. Однако при всех достоинствах SVI остаётся жёстко заданной функциональной 
формой, что ограничивает ее способность описывать сложные и многомодальные профили рынка [8]. 
SABR, в свою очередь, дает стохастическую динамику волатильности и обеспечивает удобные асимп-
тотические формулы для implied volatility, широко используемые на практике. Тем не менее точность 
асимптотик и арбитраж-свобода требуют осторожности (особенно в крыльях и при экстремальных страй-
ках), а расширения, устраняющие арбитражные аномалии, усложняют численные процедуры и повы-
шают вычислительную стоимость [9]. Непараметрические и полупараметрические методы сглаживания 
призваны повысить гибкость по форме. Важное направление — арбитраж-свободное сглаживание 
сплайнами: накладываются ограничения монотонности/выпуклости, совместимые с ценовыми неравен-
ствами и условиями отсутствия арбитража. Эти методы сравнительно просты и быстры, но чувстви-
тельны к конфигурации данных и всё равно вводят структурные ограничения через класс сглаживающих 
функций [10]. Отдельный класс — многостадийные (multistage) или двухшаговые фреймворки. Типичный 
дизайн: на первом шаге извлекают компактное представление поверхности (факторы/признаки), на вто-
ром — восстанавливают полную поверхность с явным контролем арбитража. Такие подходы улучшают 
стабильность и совместимость с динамикой во времени, но опираются на относительно тяжёлые модели 
восстановления (включая глубокие сети) и сложные пайплайны [5]. С развитием машинного обучения 
получили распространение модели на нейросетях, в том числе с мягким или жёстким учётом no-arbitrage 
ограничений, а также генеративные модели (VAE/GAN/диффузионные) для имитации или до-заполнения 
поверхностей. Они способны подстраиваться под сложную геометрию IV-surface и часто дают высокую 
точность, но требуют существенных вычислительных ресурсов, длительного обучения, тонкой настройки 
и операционного сопровождения — что затрудняет применение в средах с ограничениями по латентно-
сти [11]. Ключевой практический вызов обостряется на коротких сроках до экспирации. Теория и эмпи-
рика показывают, что близко к экспирации поведение улыбки резко зависит от структуры прыжков и 
свойств процесса цены; возникают характерные «взрывы»/крутые крылья, которые плохо поддаются 
жёстким параметризациям и требуют повышенной гибкости и аккуратной регуляризации [12]. Дополни-
тельные сложности возникают вокруг корпоративных и макроэкономических событий. Перед отчетами 
по прибыли, заседаниями ФРС и другими релизами неопределённость увеличивается, а после — резко 
переоценивается; соответствующие деформации IV-поверхности документированы в академической ли-
тературе для акций и процентных ставок. Влияние проявляется как в уровнях IV, так и в форме 
улыбки/поверхности, усиливая требования к модели: она должна быть одновременно гибкой (по форме), 
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устойчивой (к шуму и пропускам данных) и операционно быстрой [13]. Таким образом, в текущем состо-
янии литературы наблюдается устойчивый компромисс: быстрые и простые схемы (SVI, SABR, сплайны) 
удобны и распространены, но накладывают сильные предпосылки на геометрию поверхности; более 
гибкие и точные ML/генеративные подходы уменьшают структурные ошибки, зато усложняют калибровку 
и повышают требования к вычислениям и поддержке, что особенно критично в эпоху высокочастотной 
торговли и алгоритмических систем с жесткими SLA по задержкам [8]. Наконец, даже обзорные работы 
подчеркивают, что выбор параметризации/функционала калибровки и численной процедуры напрямую 
влияет на устойчивость и арбитраж-свободу результирующей поверхности; а при скудных/шумных дан-
ных проблема усложняется еще сильнее. Это особенно заметно на коротких экспирациях, где «локаль-
ная» геометрия поверхности сильно меняется во времени, и вокруг событий, когда данные частичны и 
быстро устаревают [14]. 

Форма улыбки (или поверхности) подразумеваемой волатильности претерпела значительную эво-
люцию: если еще десятилетие-два назад доминировали сравнительно простые «U-образные» кривые 
(где implied volatility по мере удаления страйка от at-the-money возрастает), то сегодня на рынках можно 
наблюдать гораздо более сложные структуры — «W-образные», «S-образные», линейные участки, экс-
поненциальные хвосты, а при сильных событиях даже «многогорбые» формы или вовсе отсутствие 
улыбки. Так, исследование Алекссиу и др. фиксирует, что перед объявлениями прибыли у опционов с 
короткими сроками нередко возникают обратные (concave) кривые-формы, включая S- или W-виды, что 
резко отличается от привычной выпуклой улыбки [15]. Дополнительно, в теоретических и эмпирических 
исследованиях показано, что форма кривой подразумеваемой волатильности может принимать широкий 
спектр конфигураций — от классических U-образных до W-образных и осциллирующих структур с не-
сколькими минимумами и максимумами. Такие многоэкстремальные профили возникают в зависимости 
от параметров распределения доходностей и структуры рыночных ожиданий, отражая многорежимность 
поведения волатильности и неоднородность потоков риска на рынке [16]. В частности, при очень корот-
ком сроке до экспирации или перед корпоративным/макрособытием, когда риск наступления крупного 
прыжка или изменения режима существенно возрастает, распределение риска становится многомодаль-
ным, что провоцирует «двугорбые» или даже «трёхгорбые» улыбки [17]. Также важно отметить, что клас-
сические асимптотические исследования показывают, что при подходе к нулевому времени до экспира-
ции или крайним страйкам распределение может демонстрировать гораздо более резкие изменения 
формы, чем простая квадратичная зависимость лог-страйка [18]. Таким образом, современная эмпирика 
и теория свидетельствуют о том, что модели, предусматривающие лишь U-образную или линейную 
форму улыбки, значительно уступают в адекватности реальной динамике рынка — требуется гораздо 
большая гибкость, чтобы корректно отражать, например, нелинейности, асимметрии, мультигорбость, 
эффекты ликвидности и режимов ожидания событий. 

Методология 
В данной работе мы предлагаем метод — на основе гауссовых смесей (GMM) в сочетании с регрес-

сией — который удовлетворяет всем требованиям, упомянутым в предыдущих разделах: он является 
shape-agnostic (не накладывает жесткой формы), показывает точность, сравнимую с глубокими нейросе-
тями, но выигрывает по скорости и ресурсным затратам. Эмпирические тесты показывают, что предло-
женный метод превосходит традиционные параметрические модели с точки зрения гибкости и аналоги-
чен результатам сложных моделей в плане точности, при более легкой реализации и меньших вычисли-
тельных требованиях. 

Bjerksund-Stensland Model: исходная подразумеваемая волатильность 
На первом этапе собирается рыночная информация: премии опционов (call/put) для различных 

страйков 𝐾 и сроков до экспирации 𝜏. Для каждого опциона, особенно американского стиля (с учетом 
дивидендной доходности и возможности раннего исполнения), применяется аппроксимационная модель 
Bjerksund–Stensland, обеспечивающая аналитическую скорость при высокой точности. Этот метод даёт 
теоретическую цену опциона 𝐶𝑚𝑜𝑑𝑒𝑙(𝜎) как функцию волатильности 𝜎. Затем решается обратная задача: 
нахождение такой волатильности 𝜎𝑟𝑎𝑤, при которой модельная цена совпадает с рыночной, 

𝐶𝑚𝑜𝑑𝑒𝑙(𝜎𝑟𝑎𝑤) ≈ 𝐶𝑚𝑘𝑡. 
В результате для каждой пары (𝐾𝑖 , 𝜏𝑖) вычисляется значение 𝜎𝑟𝑎𝑤,𝑖, формируя множество точек 

{(𝐾𝑖 , 𝜏𝑖) → 𝜎𝑟𝑎𝑤,𝑖}. 
Для американского опциона с дивидендами теоретическая цена по Bjerksund–Stensland (2002) вы-

ражается аналитически: 

𝐶𝐵𝑆(𝑆0, 𝐾, 𝜏, 𝜎) = 𝛷(𝑆0, 𝑏(𝜏), 𝛽1, 𝐵0) − 𝛷(𝑆0, 𝑏(𝜏), 𝛽2, 𝐵0) + 𝐴1𝑆0
𝛽1 − 𝐴2𝐾𝛽2 , 

где 

𝛽1,2 =
1

2
−

𝑟 − 𝑞

𝜎2 ± √(
𝑞 − 𝑟

𝜎2 −
1

2
)

2

+
2𝑟

𝜎2, 

а коэффициенты 𝐴1, 𝐴2 и граница раннего исполнения 𝑏(𝑡) задаются как 

https://fmai.memberclicks.net/assets/docs/Derivatives2022/Concave_AGKR.pdf?utm_source=chatgpt.com
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𝐴1 =
𝑏(𝑇)1−𝛽1

𝛽1 − 𝛽2
(

𝛽2 − 1

𝑟 − 𝑞 +
1
2

𝜎2𝛽2

) , 𝐴2 =
𝑏(𝑇)1−𝛽2

𝛽1 − 𝛽2
(

𝛽1 − 1

𝑟 − 𝑞 +
1
2

𝜎2𝛽1

), 

 𝑏(𝑡) = 𝐵0 + (𝐵∞ − 𝐵0)(1 − 𝑒−𝛾(𝑇−𝑡)), 𝐵∞ =
𝛽2

𝛽2−1
𝐾, 𝐵0 = 𝑚𝑎𝑥 (𝐾,

𝑟

𝑞
𝐾) ,  𝛾 = −

2𝑟

𝜎2𝛽2(𝛽2−1)
. 

Для извлечения 𝜎𝑟𝑎𝑤 решается нелинейное уравнение 

𝑓(𝜎) = 𝐶𝐵𝑆(𝑆0, 𝐾, 𝜏, 𝜎) − 𝐶𝑚𝑘𝑡(𝐾, 𝜏) = 0, 
с помощью итерационного метода Ньютона–Рафсона, 

𝜎𝑛+1 = 𝜎𝑛 −
𝐶𝐵𝑆(𝑆0, 𝐾, 𝜏, 𝜎𝑛) − 𝐶𝑚𝑘𝑡(𝐾, 𝜏)

𝜕𝐶𝐵𝑆

𝜕𝜎
(𝑆0, 𝐾, 𝜏, 𝜎𝑛)

, 
𝜕𝐶𝐵𝑆

𝜕𝜎
≈

𝐶𝐵𝑆(𝜎 + 𝛥𝜎) − 𝐶𝐵𝑆(𝜎 − 𝛥𝜎)

2𝛥𝜎
. 

Чтобы существенно ускорить процесс, нами предложен итеративный способ расчёта, который ис-
пользует корреляцию соседних страйков и экспираций. Расчёт начинается с точки at-the-money (ATM), 
где волатильность наиболее устойчива и легко определяется. Далее итерации распространяются влево 
и вправо по страйкам: 

𝜎0(𝐾𝑖+1, 𝜏𝑗) = 𝜎𝑟𝑎𝑤(𝐾𝑖 , 𝜏𝑗), 𝜎0(𝐾𝑖−1, 𝜏𝑗) = 𝜎𝑟𝑎𝑤(𝐾𝑖 , 𝜏𝑗), 

а для соседних экспираций выполняется перекрёстная инициализация: 

𝜎𝐴𝑇𝑀(𝜏𝑗+1) ← 𝜎𝐴𝑇𝑀(𝜏𝑗). 

Такой способ учитывает гладкость поверхности волатильности и уменьшает количество итераций 
до 2–3, даже для «плохих» стартовых значений, обеспечивая устойчивую сходимость без расхождений. 

Эта схема демонстрирует особую эффективность на больших выборках и при потоковой обработке 

данных: все точки (𝐾𝑖 , 𝜏𝑖) обрабатываются последовательно, но при этом каждая итерация использует 
локальную память предыдущих вычислений, что делает процесс линейным по времени и естественно 
параллелизуемым. 

Благодаря такой оптимизации и использованию аналитической формы Bjerksund–Stensland вместо 
полного решения PDE, достигается высокая точность и минимальные временные затраты. Полученные 
значения 𝜎𝑟𝑎𝑤 формируют плотную и устойчивую сетку исходной IV, служащую надёжной базой для 
дальнейшей калибровки поверхности в GMM/GMR-модели. Этот подход особенно эффективен для вы-
сокочастотных систем и больших наборов данных, где прямое численное решение для каждой точки по 
отдельности потребовало бы избыточных вычислений. 

Gaussian Mixture Models and Regression: калибровка поверхности подразумеваемой волатильности 
После получения исходных точек подразумеваемой волатильности формируется обучающая вы-

борка 

𝐷 = {(𝐾𝑖 , 𝜏𝑖 , 𝜎𝑖
𝑟𝑎𝑤)}𝑖=1

𝑁  

где 𝐾 — страйк, 𝜏 — время до экспирации, 𝜎𝑟𝑎𝑤 — исходная волатильность. 
На этом наборе обучается Gaussian Mixture Model (GMM) с числом компонент 𝑀 ≈ 15. Каждая ком-

понента описывает локальную область поверхности, а вся смесь аппроксимирует вероятностную струк-
туру распределения точек (𝐾, 𝜏, 𝜎𝑟𝑎𝑤). Исследования показывают, что гауссовые смеси высокой размер-
ности способны гибко описывать сложные формы улыбок и поверхностей, включая асимметричные, мно-
гомодальные и осциллирующие зависимости [16]. 

Совместная плотность смеси записывается как 

𝑝(𝐾, 𝜏, 𝜎) = ∑ 𝜋𝑚𝑁([𝐾, 𝜏, 𝜎]⊤|𝜇𝑚, 𝛴𝑚)𝑀
𝑚=1 , 

где 𝜋𝑚 — вес компоненты под индексом 𝑚 ⇒ (𝛴𝑚𝜋𝑚 = 1), 𝜇𝑚 — вектор средних, 𝛴𝑚 — ковариаци-
онная матрица. 

После обучения GMM применяется Gaussian Mixture Regression (GMR), позволяющая получить 
условное распределение волатильности при фиксированных (𝐾, 𝜏). Для каждой компоненты 𝑚 
ковариационная структура разбивается на блоки: 

𝛴𝑚 = [
𝛴𝑚

𝑢𝑢  𝛴𝑚
𝑢𝜎 

𝛴𝑚
𝜎𝑢  𝛴𝑚

𝜎𝜎 
] ,  𝜇𝑚 = [

𝜇𝑚
𝑢  

𝜇𝑚
𝜎  

] ,  𝑢 = [𝐾, 𝜏]⊤ 

Тогда условное распределение 𝜎 ∣ 𝑢 выражается как смесь нормальных распределений 

𝑝(𝜎 ∣ 𝑢) = ∑ ℎ𝑚(𝑢) 𝑁(𝜎 ∣ 𝜇𝑚∣𝑢(𝑢), 𝛴𝑚∣𝑢)

𝑀

𝑚=1

, 

где апостериорные веса 

ℎ𝑚(𝑢) =
𝜋𝑚  𝑁(𝑢 ∣ 𝜇𝑚

𝑢 , 𝛴𝑚
𝑢𝑢)

∑ 𝜋ℓ  𝑁(𝑢 ∣ 𝜇ℓ
𝑢 , 𝛴ℓ

𝑢𝑢)𝑀
ℓ=1

, 

Условные параметры каждой компоненты определяются как 

𝜇𝑚∣𝑢(𝑢) = 𝜇𝑚
𝜎 + 𝛴𝑚

𝜎𝑢(𝛴𝑚
𝑢𝑢)−1(𝑢 − 𝜇𝑚

𝑢 ), 
𝛴𝑚∣𝑢 = 𝛴𝑚

𝜎𝜎 − 𝛴𝑚
𝜎𝑢(𝛴𝑚

𝑢𝑢)−1𝛴𝑚
𝑢𝜎 

Из этого распределения вычисляется условное математическое ожидание и дисперсия подразуме-
ваемой волатильности: 
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𝜎𝑐𝑎𝑙𝑖𝑏(𝐾, 𝜏) = 𝐸[𝜎 ∣ 𝐾, 𝜏] = ∑ ℎ𝑚([𝐾, 𝜏]⊤) 𝜇𝑚∣𝑢([𝐾, 𝜏]⊤)

𝑀

𝑚=1

, 

𝑉𝑎𝑟𝑐𝑎𝑙𝑖𝑏(𝐾, 𝜏) = ∑ ℎ𝑚([𝐾, 𝜏]⊤)(𝛴𝑚|𝑢 + 𝜇𝑚|𝑢([𝐾, 𝜏]⊤)2) − (𝜎𝑐𝑎𝑙𝑖𝑏(𝐾, 𝜏))2

𝑀

𝑚=1

 

Экспериментальные результаты 
Для эмпирической оценки эффективности предложенного метода проведен ряд экспериментов на 

исторических данных опционов пяти инструментов из разных секторов экономики — AAPL (технологиче-
ский сектор), KO (потребительский сектор), JPM (финансовый сектор), XLB (промышленный/сырьевой 
сектор) и BKNG (транспортно-сервисный сектор). Выбор этих активов обусловлен их разной ликвидно-
стью, уровнем волатильности и характером движения базового актива, что позволяет проверить устой-
чивость и универсальность предложенного подхода на гетерогенных рыночных данных. 

Для каждого актива использовались рыночные котировки опционов со всеми доступными страйками 
и сроками экспирации от 1 дня до 2-х лет, что охватывает как краткосрочные, так и среднесрочные гори-
зонты. На основе этих данных рассчитывались исходные значения подразумеваемой волатильности 

𝜎𝑟𝑎𝑤 с использованием модели Bjerksund–Stensland, после чего выполнялась кластеризация GMM.  

Методика эксперимента 

 
Рисунок 1: Кластеризация наблюдаемых значении подразумеваемой волатильности одной экс-
пирации алгоритмом Gaussian Mixture Models (GMM) для AAPL (218 дней до экспирации) и JPM (8 

дней до экспирации) 
Далее выполняется калибровка поверхности методом Gaussian Mixture Regression (GMR) с вычис-

лением дисперсии регрессии. Анализ распределения этой дисперсии позволяет выявлять области по-
вышенной неопределенности по страйку и сроку до экспирации — именно там, где наблюдаются наибо-
лее активные рыночные изменения. В перспективе эти зоны можно дополнительно сопоставлять с рас-
пределением открытых интересов (open interest) для уточнения локальных центров рыночной активности 
и подтверждения направлений движения. 

 
Рисунок 2: Гауссовая регрессия наблюдаемой подразумеваемой волатильности на обученной 
GMM модели для AAPL (218 дней до экспирации) и JPM (8 дней до экспирации). Показаны сред-

няя линия и зона 2-х стандартных отклонении регрессии. 
В трёхмерной постановке моделирования подразумеваемая волатильность 𝜎𝑐𝑎𝑙𝑖𝑏 рассматривается 

как функция двух независимых переменных — страйка 𝐾 и времени до экспирации 𝜏: 

𝜎𝑐𝑎𝑙𝑖𝑏 = 𝑓(𝐾, 𝜏). 

После получения исходных точек (𝐾𝑖 , 𝜏𝑖 , 𝜎𝑟𝑎𝑤,𝑖), обученная смесь Гауссов (GMM) описывает их ве-

роятностное распределение в трёхмерном пространстве (𝐾, 𝜏, 𝜎).  
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Рисунок 3: Гаусовая поверхность подразумеваемой волатильности и гауссовы смеси для JPM 

Call опционов и BKNG Put опционов на 12 июня 2025. 
 

Далее с помощью Gaussian Mixture Regression (GMR) вычисляется условное распределение 
𝜎|(𝐾, 𝜏). Для каждой пары (𝐾, 𝜏) берётся математическое ожидание этого распределения: 

𝜎𝑐𝑎𝑙𝑖𝑏(𝐾, 𝜏) = 𝐸[𝜎 | 𝐾, 𝜏]. 

  
Рисунок 4: Поверхность подразумеваемой волатильности  

(Implied Volatility Surface) JPM и AAPL Put опционов на 12 июня 2025 
 

Это создаёт непрерывную трёхмерную поверхность implied volatility, где оси 𝐾 и 𝜏 независимы, а по 
вертикали отображается прогнозная волатильность. Визуально она выглядит как плавная поверхность 
без разрывов и «ступеней» между сроками — не набор отдельных улыбок, а единая функция, обеспечи-
вающая согласованность во времени и по страйку. 

 
Рисунок 5: Поверхность подразумеваемой волатильности (Implied Volatility Surface)  

опционов AAPL Call и Put на 12 июня 2025  
 

Такой подход особенно удобен для анализа динамики крыльев и временной структуры волатиль-
ности: на одной 3D-поверхности можно сразу видеть, где рынок переоценивает дальние опционы, как 
кривизна меняется с приближением к экспирации, и как распределяется риск вдоль всей сетки (𝐾, 𝜏). В 
отличие от параметрических моделей, где каждая экспирация моделируется отдельно, здесь поверх-
ность восстанавливается целиком — с учётом межвременных зависимостей и плавности между сроками. 
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Погрешности и дисперсионный анализ 

 
Рисунок 6: Распределение отклонения регрессии для KO Call и AAPL Put опционов 

  
Рисунок 7: Стандартное отклонение регрессии, ошибка (наблюдение – регрессия), Mean Absolute 

Error (MAE) и Root Mean Square Error (RMSE) для JPM и KO Put опционов на 12 июня 2025 
 
 

Таблица 1. Ошибки аппроксимации модели для разных активов и типов опционов 

𝑀𝐴𝐸𝑎𝑣𝑔 = 0.02545,   𝑅𝑀𝑆𝐸𝑎𝑣𝑔 = 0.0376, 𝐸𝑟𝑟𝑜𝑟 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 = 0.00021. 

MAEₐᵥg = 0.02545 и RMSEₐᵥg = 0.0376 означают, что средняя ошибка аппроксимации составляет 
2.5–3.7 % от масштаба волатильности. Это — очень высокая точность для моделей IV-поверхностей, 
особенно без обучения нейросети. Такой уровень ошибки показывает, что модель корректно 

Актив Тип опциона MAE RMSE rror Mean 

AAPL Call 0.02609 0.03310 0.00047 

 Put 0.02635 0.03336 -0.00011 

KO Call 0.03914 0.04906 0.00054 

 Put 0.00427 0.05422 0.00140 

JPM Call 0.03416 0.04338 0.00289 

 Put 0.02810 0.03692 -0.00008 

XLB Call 0.02667 0.03311 0.00111 

 Put 0.02248 0.02816 -0.00213 

BKNG Call 0.02345 0.03248 -0.00099 

 Put 0.02377 0.03302 -0.00096 
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восстанавливает реальную геометрию улыбки и временной структуры, при этом оставаясь стабильной 
на всех страйках и сроках.  

Средний Error Average = 0.00021 (≈ 0.02 %) дополнительно подтверждает отсутствие систематиче-
ского смещения: положительные и отрицательные ошибки взаимно компенсируются, что говорит о 
нейтральной генерализации — модель не переоценивает и не недооценивает волатильность в среднем. 

Сравнительный анализ 
В большинстве опубликованных исследований для оценки моделей поверхности подразумеваемой 

волатильности применяются индексные данные — например, SPX, STOXX 50, NIKKEI 225 и другие вы-
соколиквидные индексы. Эти данные отличаются стабильностью и плотностью страйков, что делает за-
дачу сглаживания и аппроксимации существенно проще. 

В нашем случае подход был протестирован в более сложных условиях: мы провели анализ на ге-
терогенном наборе активов — от технологических и потребительских акций (AAPL, KO) до финансовых 
(JPM), сырьевых (XLB) и сервисных компаний (BKNG), представляющих сектор онлайн-туризма и брони-
рования. Это позволило проверить устойчивость модели при разных профилях ликвидности, дисперсии 
волатильности и неровной структуре страйков. 

 
Таблица 2. Сравнение средних точностей нейронных моделей и нашего метода. 

Модель Год Тип подхода MAE RMSE 

GMM + GMR (предлагаемая) 2025 
Непараметрическая, без обучения, no-arbi-

trage 
0.025 0.038 

Neural Correction Model (Grith) 
[19] 

2023 
Нейросетевая коррекция параметрических 

моделей 
0.030 0.055 

Deep Volatility Network (Stacy) 
[20] 

2023 LSTM / GRU / CNN 
0.056 – 
0.114 

0.060 – 
0.120 

GAN-Enhanced IV Reconstruc-
tion [21] 

2025 GAN (генеративная модель) 0.039 0.049 

Two-Step Arbitrage-Free DNN 
(Zhang et al.) [22] 

2021 DNN + PCA / VAE (двухшаговый фреймворк) ≈ 0.040 ≈ 0.050 

 
Таким образом, хотя сопоставление результатов с другими работами носит ориентировочный ха-

рактер, по порядку величин ошибок наша модель показывает себя на уровне лучших опубликованных 
нейросетевых решений. Более того, тот факт, что она сохраняет стабильную точность даже на сложных 
активах, демонстрирует её робастность и реальную практическую применимость. 

Выводы 
Предложенный подход, основанный на комбинации Gaussian Mixture Models (GMM) и Gaussian Mix-

ture Regression (GMR), продемонстрировал, что формонезависимое, универсальное моделирование по-
верхности подразумеваемой волатильности может быть реализовано без компромисса между точно-
стью и вычислительной эффективностью. Модель достигает средней ошибки менее 4 % при практически 
нулевом смещении, что соответствует уровню state-of-the-art методов, при этом полностью исключая 
необходимость в глубоком обучении и сложной оптимизации. Такой результат особенно значим, учиты-
вая, что большинство существующих исследований опирается на относительно «лёгкие» индексные 
данные (SPX, STOXX 50 и т. д.), тогда как наш метод был протестирован на разнообразном наборе ак-
тивов с разной структурой страйков, ликвидностью и сроками до экспирации — от технологических акций 
до финансовых и сырьевых инструментов. 

Эта универсальность подтверждает высокую робастность модели, её способность сохранять глад-
кость и точность даже при значительных изменениях рыночных условий, а также отсутствие переобуче-
ния на локальных областях поверхности. Кроме того, GMM/GMR-подход обладает естественной интер-
претируемостью: каждая компонентная плотность имеет статистическое значение, а регрессионная 
структура позволяет получать не только центральную оценку, но и условную дисперсию, отражающую 
уровень неопределенности по страйкам и срокам. Это превращает модель в надёжный инструмент ко-
личественного анализа, способный не только восстанавливать структуру implied volatility, но и выявлять 
зоны рыночной напряжённости, где сосредоточена ключевая динамика. В совокупности эти свойства де-
лают предложенный метод эффективным, воспроизводимым и практически применимым решением для 
задач ценообразования, хеджирования и риск-менеджмента в современных финансовых системах. 
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Abstract  
This paper introduces a new method for modeling the implied volatility surface based on the combination 

of Gaussian Mixture Models (GMM) and Gaussian Mixture Regression (GMR). Unlike traditional approaches 
that assume a fixed functional form of the volatility surface, the proposed framework is shape-agnostic and can 
flexibly capture the complex volatility dynamics observed across different asset classes, including a wide range 
of smile shapes — from classical U-shaped to multimodal W-shaped and other non-standard patterns observed 
in real trading environments. By leveraging the probabilistic expressiveness of GMMs and the predictive power 
of regression, the method achieves accuracy comparable to deep learning models while outperforming them in 
computational efficiency, requiring no training phase. Empirical results demonstrate that the proposed approach 
surpasses existing parametric models in flexibility and robustness, providing accuracy on par with neural-net-
work-based solutions but with significantly lower computational cost. Due to its lightness, scalability, and inter-
pretability, the method is particularly well-suited for high-frequency financial applications, offering practitioners 
and researchers a reliable and efficient tool for volatility modeling and risk management. 


